On the indecomposable modules in almost cyclic coherent Auslander-Reiten components

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preprojective Modules and Auslander-Reiten Components

In [2], Auslander and Smalø introduced and studied extensively preprojective modules and preinjective modules over an artin algebra. We now call a module hereditarily preprojective or hereditarily preinjective if its submodules are all preprojective or its quotient modules are all preinjective, respectively. In [4], Coelho studied Auslander-Reiten components containing only hereditarily preproj...

متن کامل

Almost Regular Auslander-reiten Components and Quasitilted Algebras

The problem of giving a general description of the shapes of AuslanderReiten components of an artin algebra has been settled for semiregular components (see [4, 9, 14]). Recently, S. Li has considered this problem for components in which every possible path from an injective module to a projective module is sectional. The result says that such a component is embeddable in some ZZ∆ with ∆ a quiv...

متن کامل

Auslander-reiten Components Containing Modules with Bounded Betti Numbers

Let R be a connected selfinjective Artin algebra, and M an indecomposable nonprojective R-module with bounded Betti numbers lying in a regular component of the Auslander-Reiten quiver of R. We prove that the Auslander-Reiten sequence ending at M has at most two indecomposable summands in the middle term. Furthermore we show that the component of the Auslander-Reiten quiver containing M is eithe...

متن کامل

On Auslander–Reiten components for quasitilted algebras

An artin algebra A over a commutative artin ring R is called quasitilted if gl.dimA ≤ 2 and for each indecomposable finitely generated A-module M we have pdM ≤ 1 or idM ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander–Reiten quiver ΓA of a quasitilted algebra A. Let A be a...

متن کامل

Algebraic Modules and the Auslander–Reiten Quiver

Recall that an algebraic module is aKG-module that satisfies a polynomial with integer coefficients, with addition and multiplication given by direct sum and tensor product. In this article we prove that non-periodic algebraic modules are very rare, and that if the complexity of an algebraic module is at least 3, then it is the only algebraic module on its component of the (stable) Auslander–Re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2011

ISSN: 0025-5645

DOI: 10.2969/jmsj/06341121